

MATH TEST-TAKING STRATEGIES PRACTICE PACKET

- * Quadratic Equations
- * Factoring Polynomials
- * Write the Equation of a Line Given Two Points
- * Converting to Slope-Intercept Form
- * Graphing Slope Intercept Form
- * Multiple Choice Strategies
- * Parallel & Perpendicular Equations

QUADRATIC EQUATIONS: USING THE CALCULATOR: $x^2 + 5x + 6 = 0$

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$1x^2 + 5x + 6 = 0$$

$$x = \frac{-5 \pm \sqrt{5^2 - 4(1)(6)}}{2(1)}$$

$$x = -2, -3$$

$$x = -2$$

$$x = -3$$

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x^2 + 5x + 6 = 0$$

$$x^2 + 11x + 18 = 0$$

$$x^2 - 3x - 28 = 0$$

$$x^2 - 2x - 15 = 0$$

$$2x^2 - 9x - 17 = 64$$

$$x^2 + 6x + 4 = -1$$

$$x^2 + 10x = -16$$

$$4x^2 + 2x - 6 = 24$$

$$2x^2 + 13x - 6 = 1$$

$$2x^2 - 8x = 10$$

$$x^2 - 2x - 2 = 22$$

$$x^2 + 13x + 32 = -8$$

FACTORING POLYNOMIALS USING THE CALCULATOR

Quadratic Equation	Factoring Trinomial
$n^2 + 4n - 12 = 0$	$n^2 + 4n - 12$
$n = 2, -6$	$(n - 2)(n + 6)$
Quadratic Equation	Factoring Trinomial
$3p^2 - 2p - 5 = 0$	$3p^2 - 2p - 5$
$x = 5/3, -1$	$(3p - 5)(p + 1)$

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

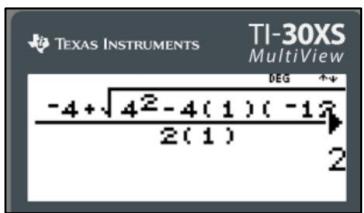
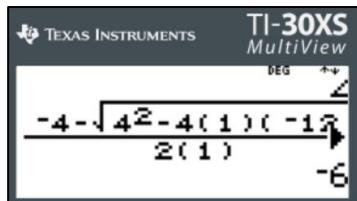
Step 1: Set up the two sets of parentheses and place the variable in each one.

$$\begin{array}{c} n^2 + 4n - 12 \\ (\text{ n }) (\text{ n }) \end{array}$$

Step 2: Label the, b, and c (just like you would in a quadratic equation)

$$\begin{array}{ccc} a & b & c \\ | & & \\ n^2 + 4n - 12 & & \\ (\text{ n }) (\text{ n }) & & \end{array}$$

Step 3: proceed to solve like a quadratic equation by using the quadratic formula.



Step 4: Whatever answer the calculator gives you, write opposite inside the parentheses.

$$\begin{array}{ccc} a & b & c \\ | & & \\ n^2 + 4n - 12 & & \\ (\text{ n } - 2) (\text{ n } + 6) & & \end{array}$$

$$n^2+4n-12$$

$$k^2-13k+40$$

$$p^2+3p-18$$

$$n^2-n-56$$

$$-6x^2+37x+6$$

$$3p^2-2p-5$$

$$2v^2+11v+5$$

$$7a^2+53a+28$$

$$-6x^2+7x-49$$

WRITING AN EQUATION OF A LINE GIVEN TWO POINTS

USING THE CALCULATOR

(2, 8) and (1, 3)

keep them as variables

$$y = mx + b$$

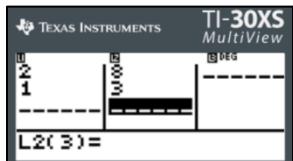
slope
y-intercept

$$y = 5x - 2$$

Step 1: Label your coordinates.

(x_1, y_1)	(x_2, y_2)
(2, 8)	(1, 3)

Step 2: Press the Data button and place the X numbers in the first column and the Y numbers in the second column.



Step 3: Press the 2nd button and then the data button. Scroll down and select the “2: 2-variable stats” then press Enter.

Step 4: Scroll down to Calculate and press Enter.

Step 5: Scroll down to letters “D” and “E”

Step 6: Write your equation of a line in slope intercept form, the “D” number is the slope. The “E” number is the y-intercept.

$$y = 5x - 2$$

2 points

(2, 8) and (1, 3)

(0, -8) and (-1, -1)

(-1, 0) and (4, -5)

(9, -1) and (-3, 7)

(-3, 5) and (6, -7)

(-5,-6) and (5,-3)

(3, 0) and (-4, -7)

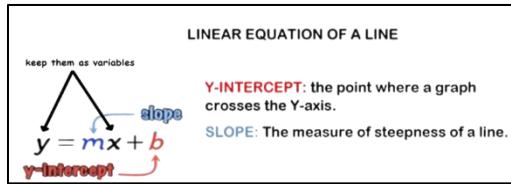
(-2, 9) and (-7, 8)

(-7, -4) and (-5, -6)

2 points

CONVERT EQUATIONS OF A LINE SLOPE INTERCEPT FORM, MINIMAL CALCULATOR USE

$$3y - 15 = -6x$$



$$y = -2x + 5$$

EXAMPLE 1

Step 1: Draw a line to represent the "street" and identify which side the y-variable is on. Use inverse operations to move any **other** term from that side to the other side of the equation. This could be the term without the x-variable or the term with the x-variable. In this example, it's the term without the x-variable.

$$\begin{array}{rcl} 3y - 15 & = & -6x + 15 \\ +15 & & \swarrow \\ 3y & = & -6x + 15 \end{array}$$

Step 2: If there is a coefficient (number) in front of the y-variable, divide all terms—both the y-term, the x-term, and the constant—by that number.

$$\begin{array}{rcl} 3y - 15 & = & -6x + 15 \\ +15 & & \swarrow \\ \hline 3y & + & -6x + 15 \\ \hline 3 & & 3 \\ \hline y & = & -2x + 5 \\ \text{slope} & \nearrow & \text{y-intercept} \end{array}$$

Step 3: If necessary, rearrange the equation into slope-intercept form. (Note: In this example, rearrangement was not needed.)

$$y = -2x + 5$$

EXAMPLE 2

Step 1: Draw a line to represent the "street" and identify which side the y-variable is on. Use inverse operations to move any **other** term from that side to the other side of the equation. This could be the term without the x-variable or the term with the x-variable. In this example, it's the term without the x-variable.

$$\begin{array}{r} 30 \\ 7x = -5y + 30 \\ -30 \\ \hline 7x - 30 = -5y \end{array}$$

Step 2: If there is a coefficient (number) in front of the y-variable, divide all terms—both the y-term, the x-term, and the constant—by that number.

$$\begin{array}{r} 30 \\ 7x = -5y + 30 \\ -30 \\ \hline 7x - 30 = -5y \\ \hline -5 \quad -5 \quad -5 \\ \hline \boxed{-7}x + \boxed{+6} = y \\ \text{slope} \quad \text{y-intercept} \end{array}$$

Step 3: Rearrange the equation into slope-intercept form.

$$y = -\frac{7}{5}x + 6$$

PRACTICE:

$$3y - 15 = -6x$$

$$7x = -5y + 30$$

$$2y - 6 = -6x$$

$$-14x + y = 7$$

EXAMPLE 3

Step 1: Draw a line to represent the "street" and identify which side the y-variable is on. Use inverse operations to move any **other** term from that side to the other side of the equation. This could be the term without the x-variable or the term with the x-variable. In this example, the y-variable is already isolated, nothing needs to move over.

$$9x + 35 = -5y$$

Step 2: If there is a coefficient (number) in front of the y-variable, divide all terms—both the y-term, the x-term, and the constant—by that number.

$$\begin{array}{r} 9x + 35 = -5y \\ \hline -5 \quad -5 \quad | -5 \\ \hline -\frac{9}{5}x - 7 = y \end{array}$$

slope
y intercept

Step 3: Rearrange the equation into slope-intercept form.

$$y = -\frac{9}{5}x - 7$$

PRACTICE:

$$9x + 35 = -5y$$

$$-3x - 2 = 2y$$

$$\frac{5}{3}y = -(x - 5)$$

$$-2(2x + y) = 28$$

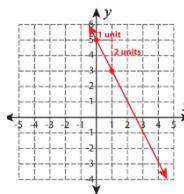
$$12y = \frac{8x - 48}{3}$$

$$\frac{3(x - y)}{2} = 9$$

Convert

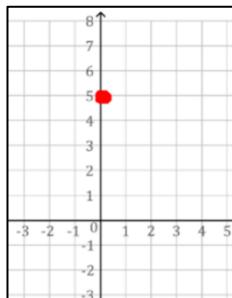
GRAPHING EQUATIONS OF A LINE SLOPE INTERCEPT FORM

$$3y - 15 = -6x \rightarrow y = -2x + 5$$



Step 1: Identify the y-intercept (in this example, its 5) and place a point at that value on the y-axis.

$$y = -2x + 5 \rightarrow$$



Step 2: If the slope (the number next to x) is not a fraction, rewrite it as a fraction with a denominator of 1. This gives you your rise (numerator) and run (denominator).

$$y = -2x + 5 \rightarrow$$

$$m = \frac{-2}{1}$$

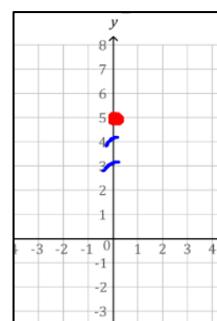
rise ↑
run →

Step 3: Starting from the y-intercept (5), follow the rise by moving up if the numerator is positive or down if it's negative. In this example, the numerator is -2, so move down 2 units.

$$y = -2x + 5 \rightarrow$$

$$m = \frac{-2}{1}$$

rise ↑
run →

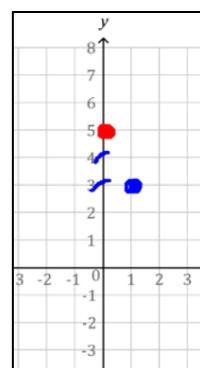


Step 4: From the new point, follow the run by moving to the right based on the denominator. In this example, the denominator is 1, so move to the right 1 unit and place a point.

$$y = -2x + 5 \rightarrow m = \frac{\text{rise}}{\text{run}} \uparrow \rightarrow$$

↓

1 →

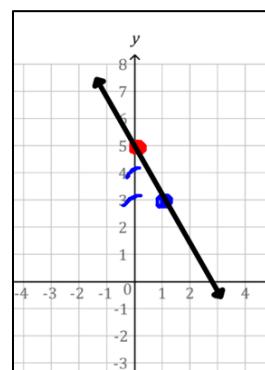


Step 5: Connect the points to form a straight line.

$$y = -2x + 5 \rightarrow m = \frac{\text{rise}}{\text{run}} \uparrow \rightarrow$$

↓

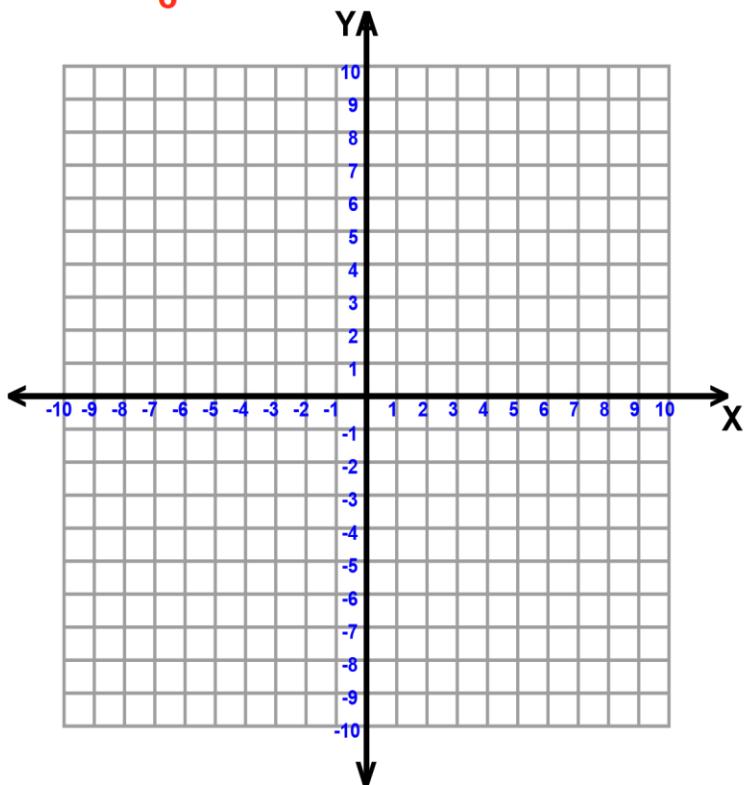
1 →



Graph

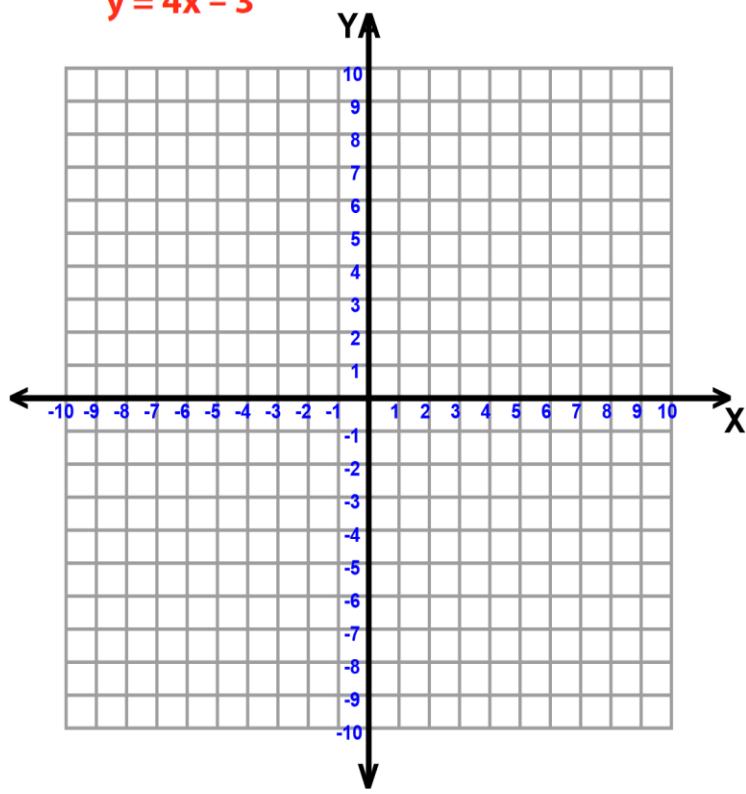
$$-5x + 6y = 12$$

$$y = \frac{5}{6}x + 2$$



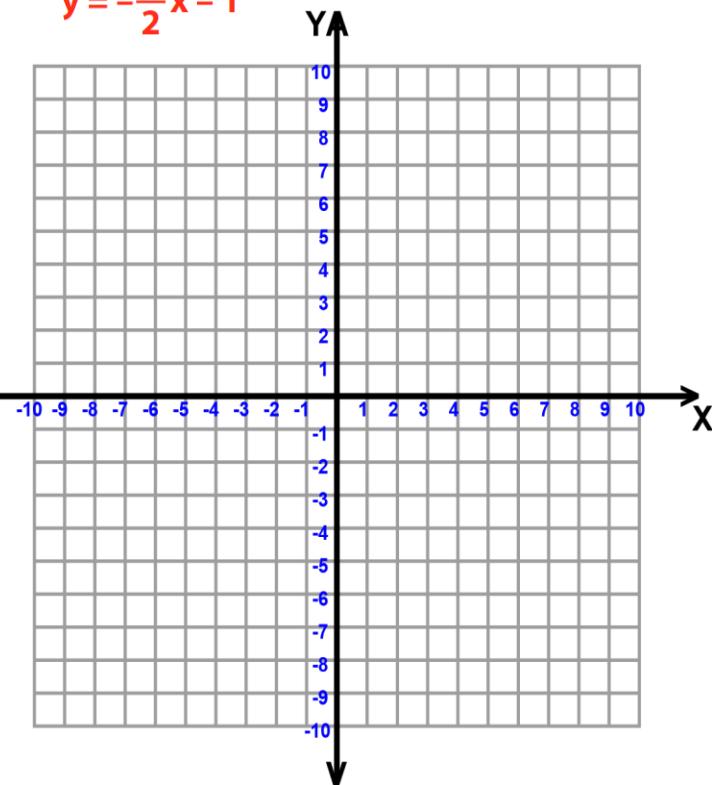
$$-y = -4x + 3$$

$$y = 4x - 3$$



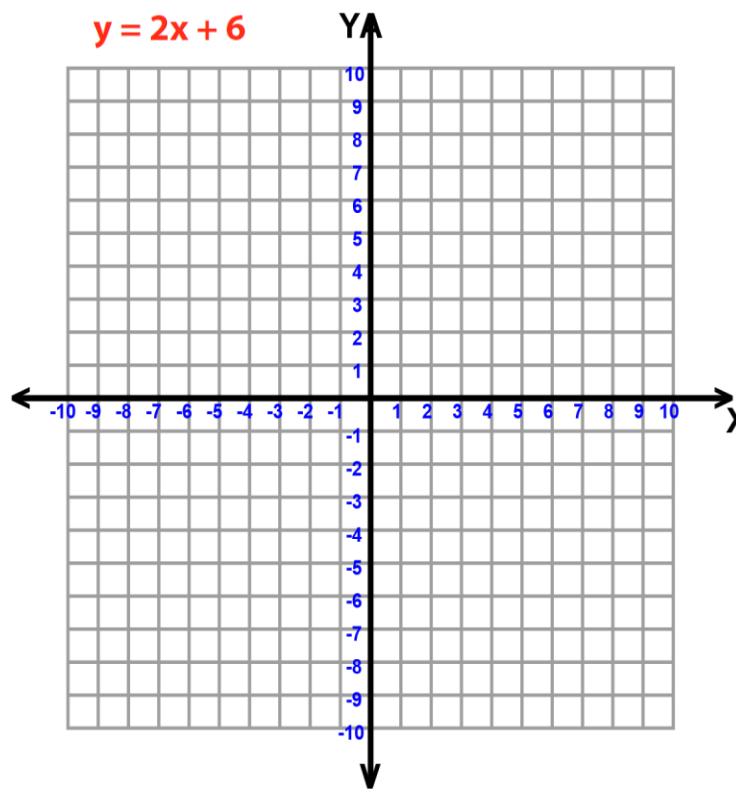
$$-3x - 2 = 2y$$

$$y = -\frac{3}{2}x - 1$$

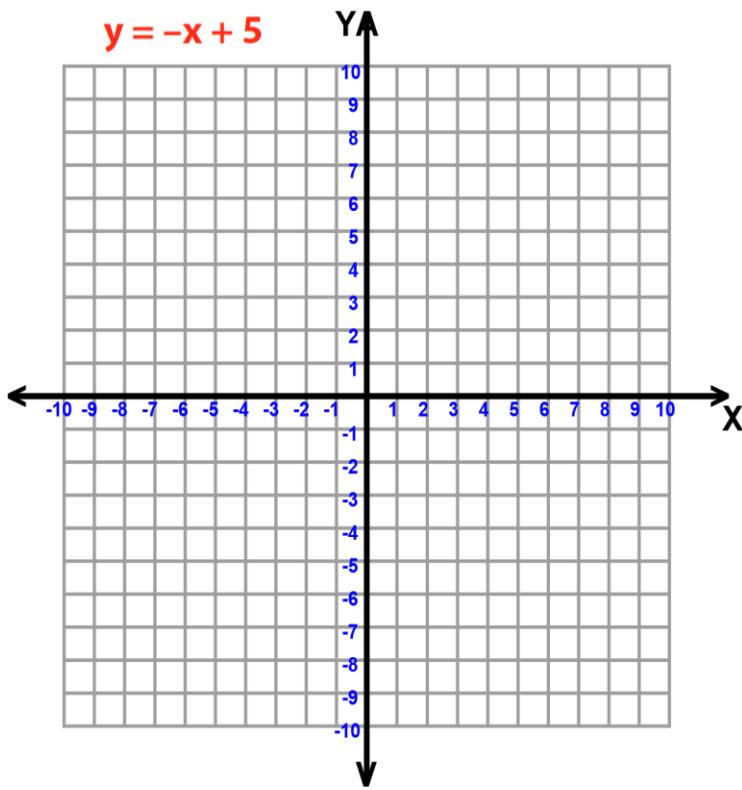


$$24 = 4y - 8x$$

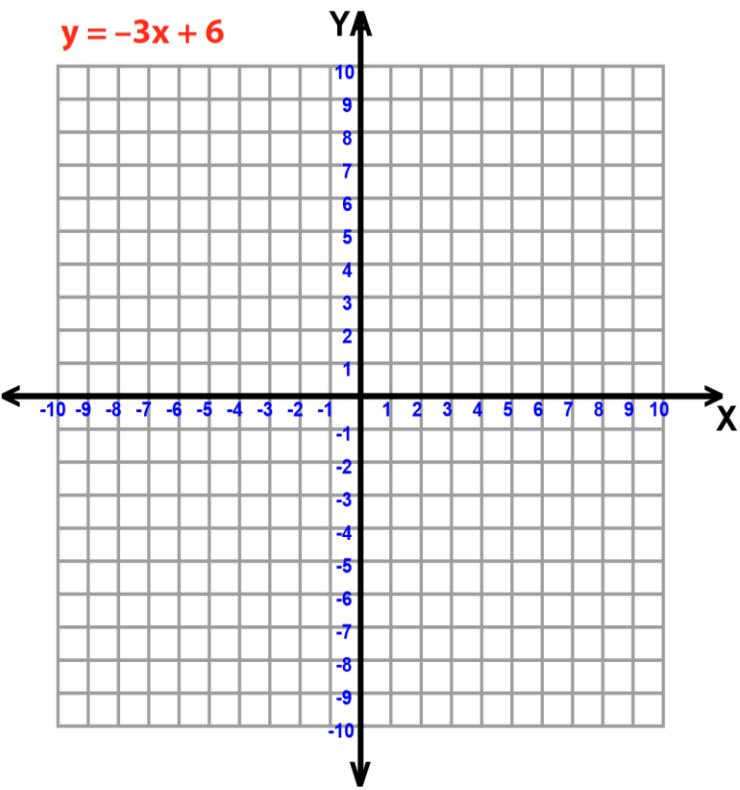
$$y = 2x + 6$$



$$x - 5 = -y$$



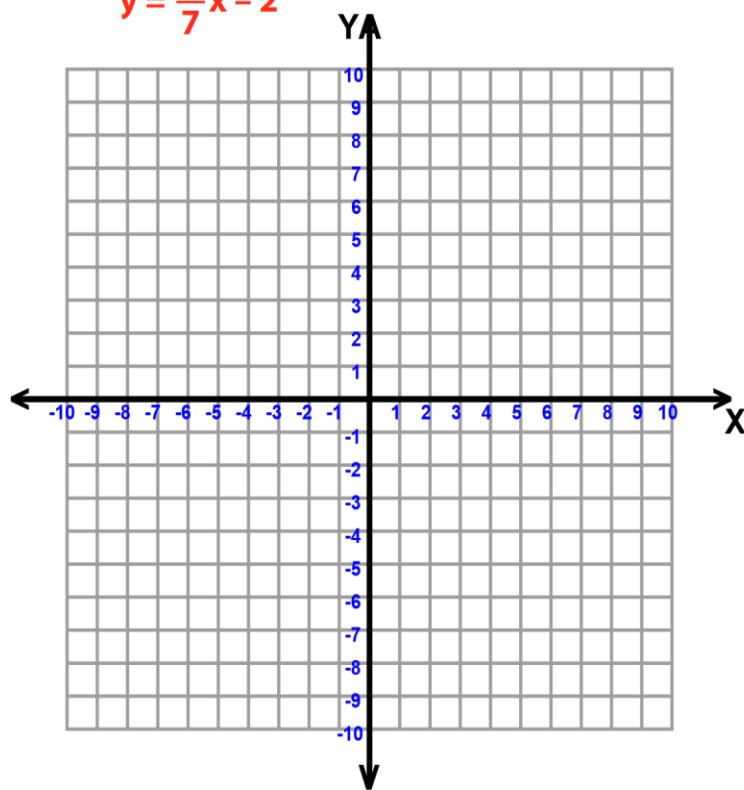
$$12 = 2y + 6x$$



Graph

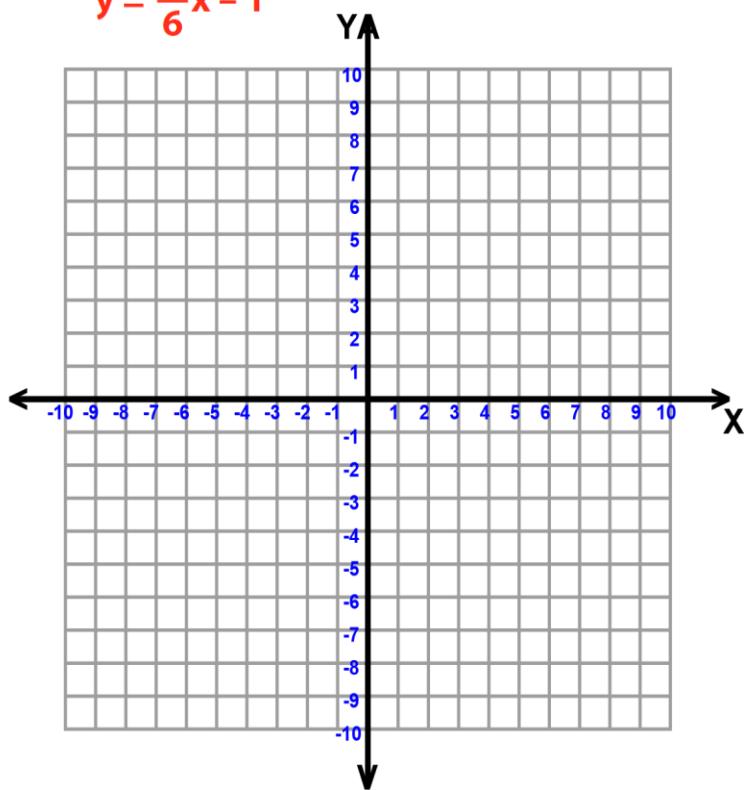
$$7y = 2x - 14$$

$$y = \frac{2}{7}x - 2$$



$$6y + 6 = x$$

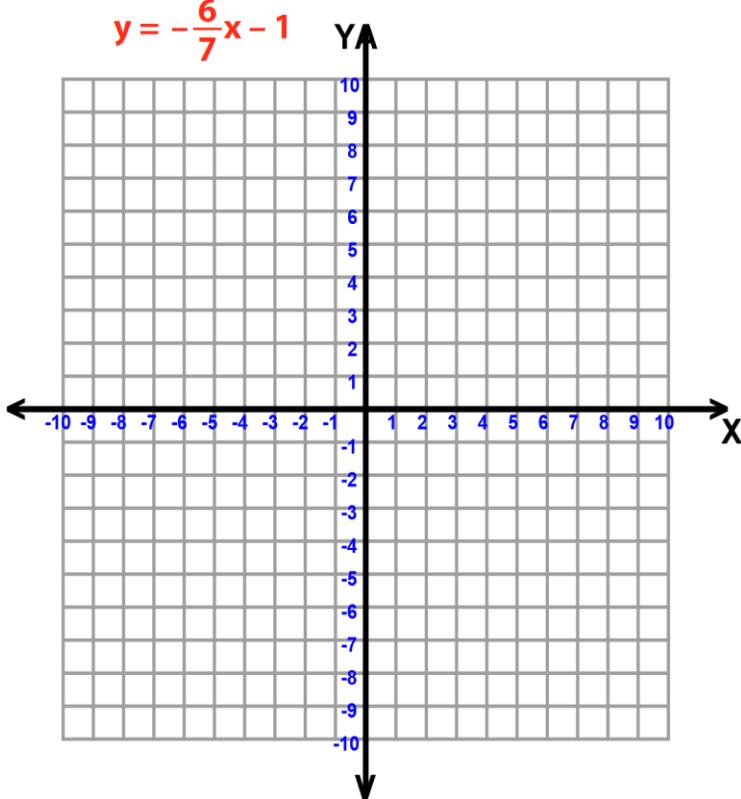
$$y = \frac{1}{6}x - 1$$



Graph

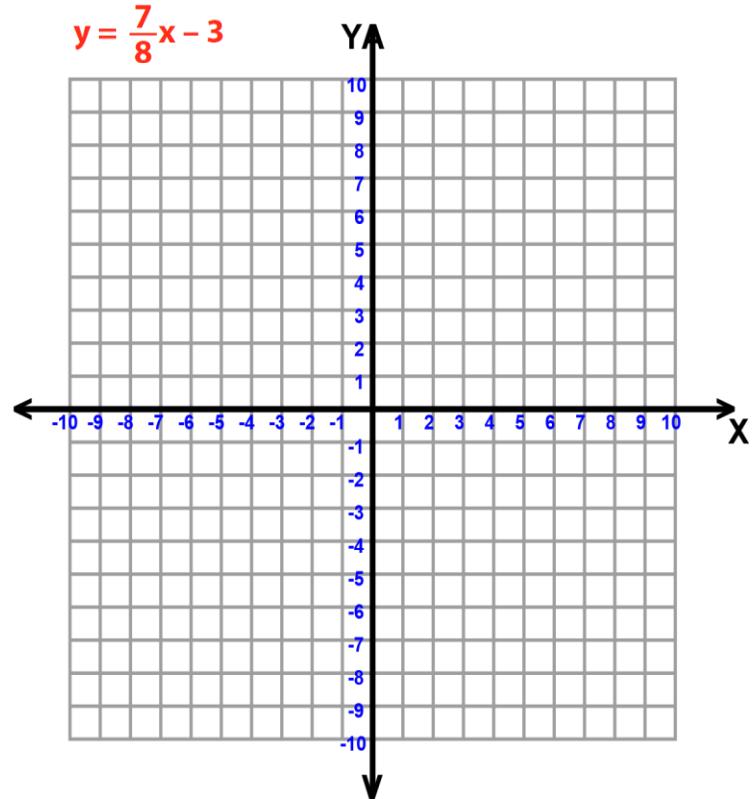
$$6x = -7y - 7$$

$$y = -\frac{6}{7}x - 1$$



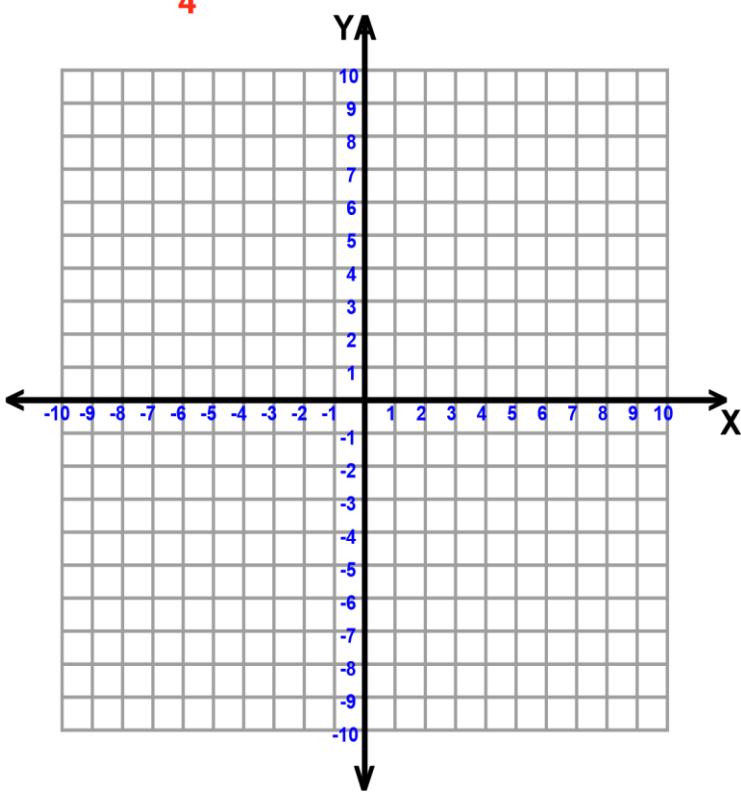
$$-8y - 24 = -7x$$

$$y = \frac{7}{8}x - 3$$



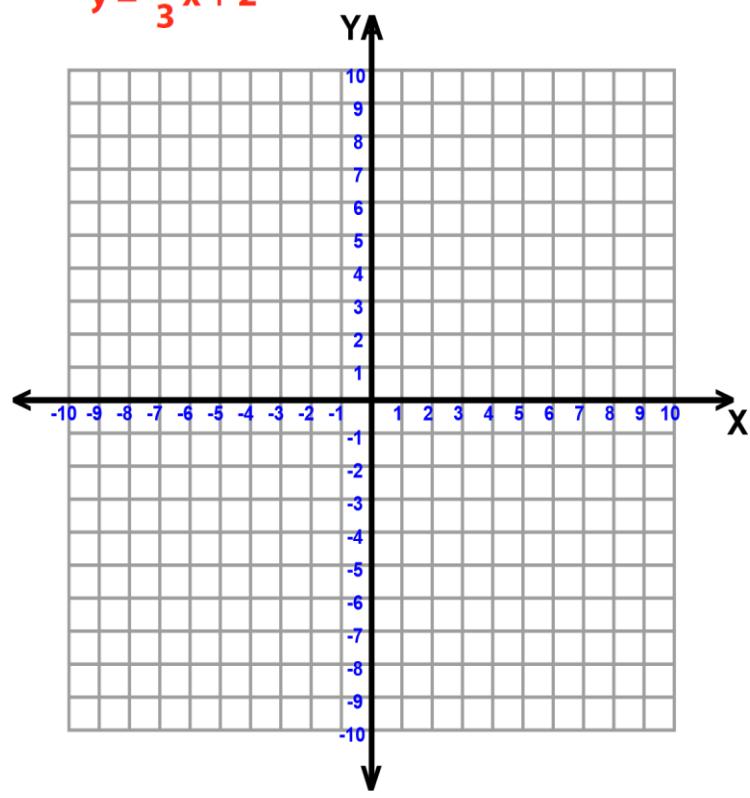
$$-4y = 3x + 8$$

$$y = -\frac{3}{4}x - 2$$



$$2x - 3y = -6$$

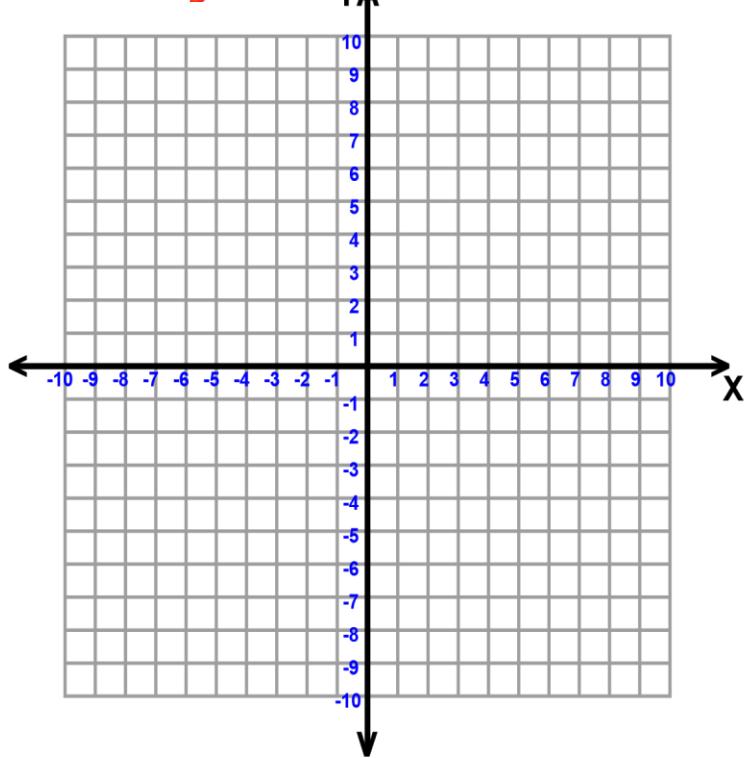
$$y = \frac{2}{3}x + 2$$



Graph

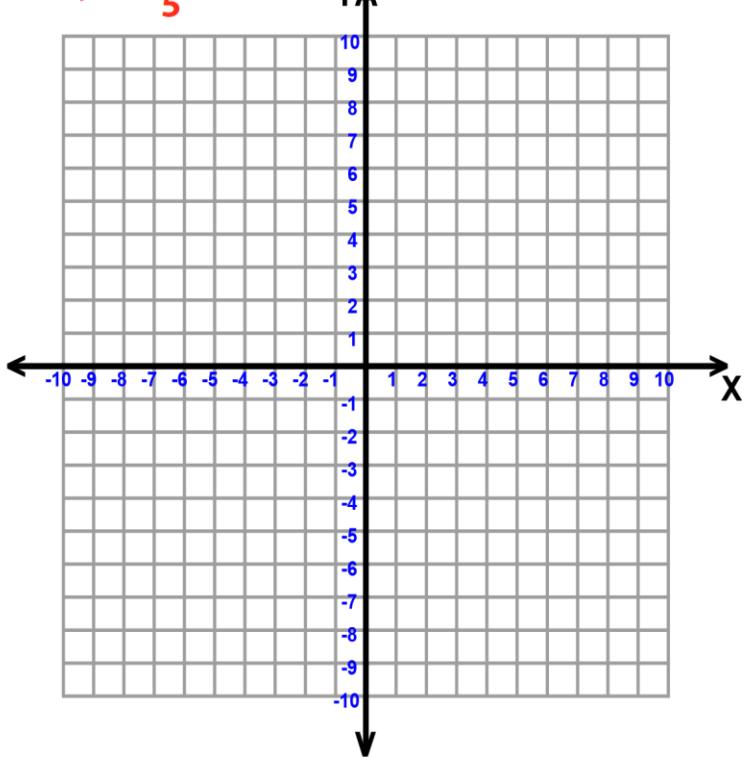
$$-20 = -4x + 5y$$

$$y = \frac{4}{5}x - 4$$



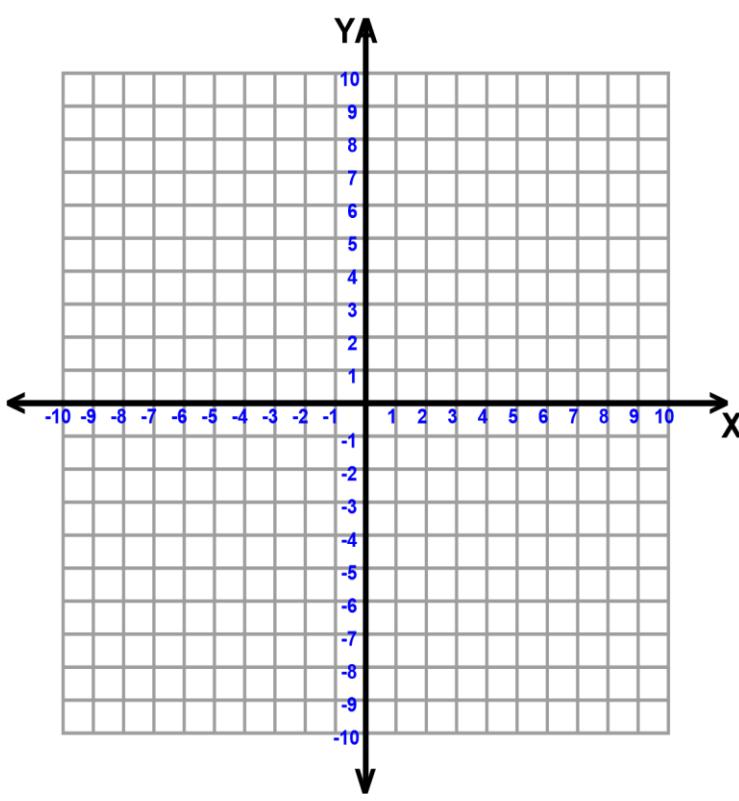
$$-10 = 6x + 5y$$

$$y = -\frac{6}{5}x - 2$$



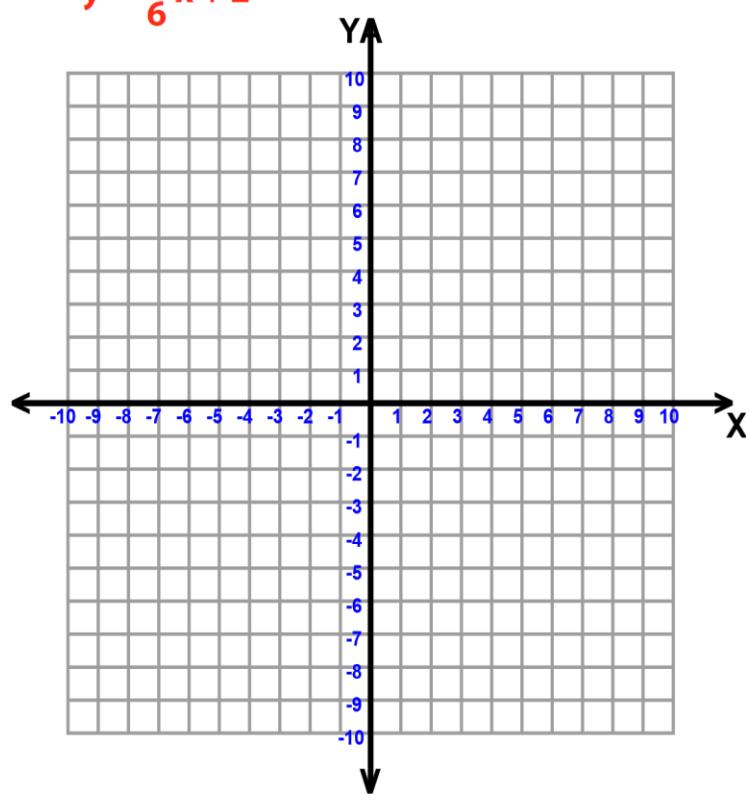
$$7x = -5y + 30$$

$$y = -\frac{7}{5}x + 6$$



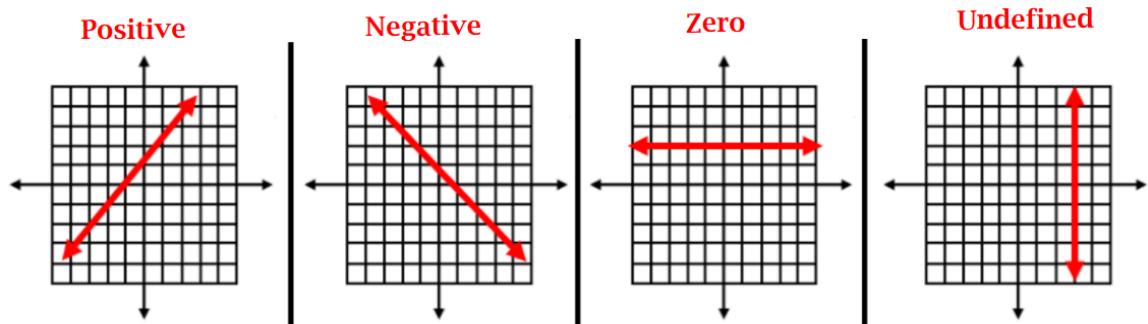
$$-6y + 12 = -5x$$

$$y = \frac{5}{6}x + 2$$



GRAPHING MULTIPLE CHOICE STRATEGIES: SAVE TIME!

*On the GED Math Exam, test-takers won't need to draw the graph of a line themselves. Instead, they will be given multiple-choice options and must choose the graph that matches the given equation. If a test-taker understands how to manually graph a line, these three simple strategies can help save time when evaluating the answer choices.

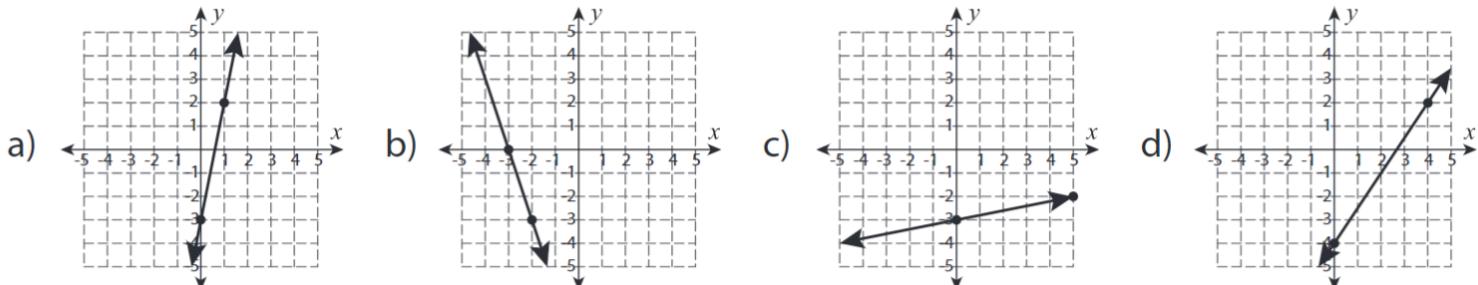


Strategy 1: Determine if the slope is positive or negative. Cross off any that do not meet the criteria.

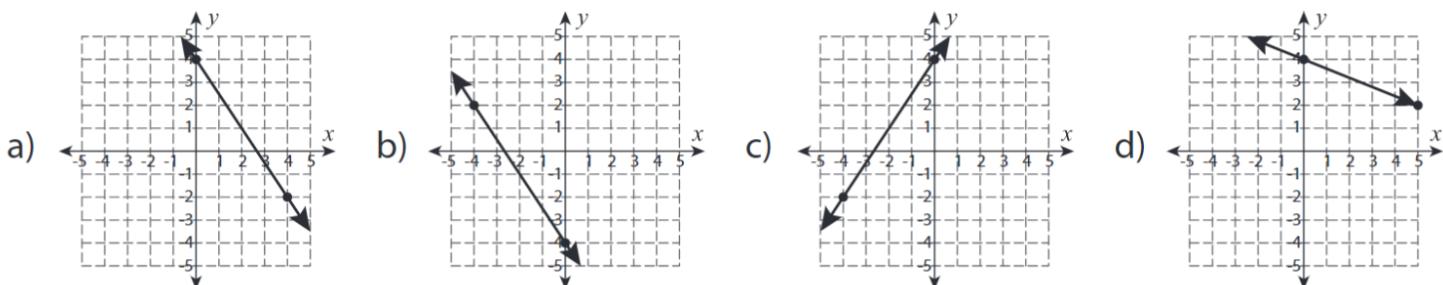
Strategy 2: Determine the slope number and identify that point on the y-axis. Cross off any that do not meet the criteria.

Strategy 3: If two or more options remain, do the rise/run to determine which line matches the second point.

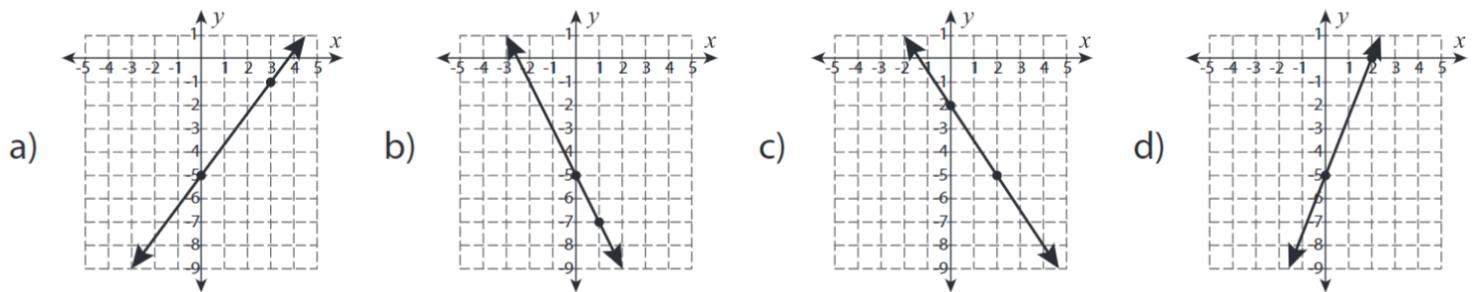
Which of the following graph represents the equation $y = 5x - 3$?



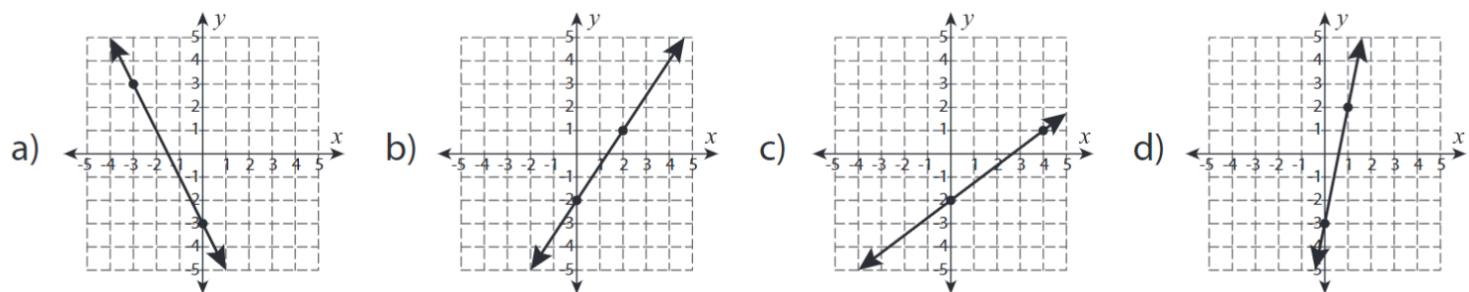
Which of the following graph represents the equation $y = -\frac{2}{5}x + 4$?



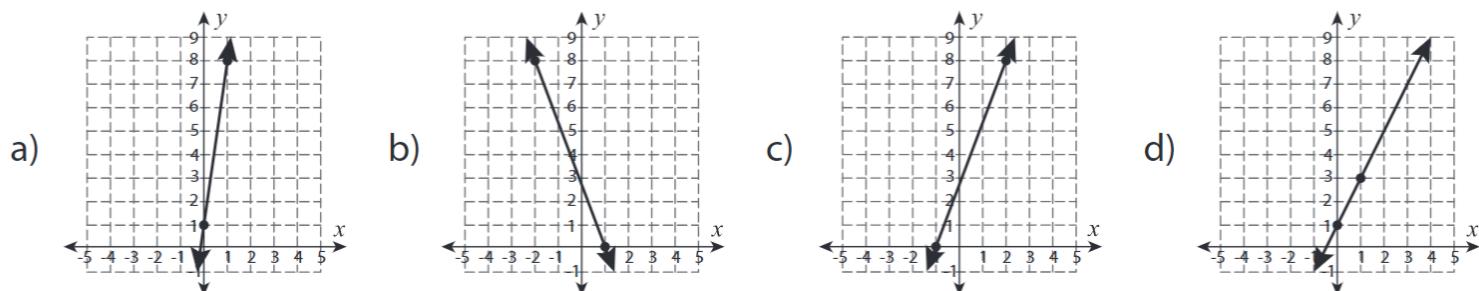
Which of the following graph represents the equation $y = -2x - 5$?



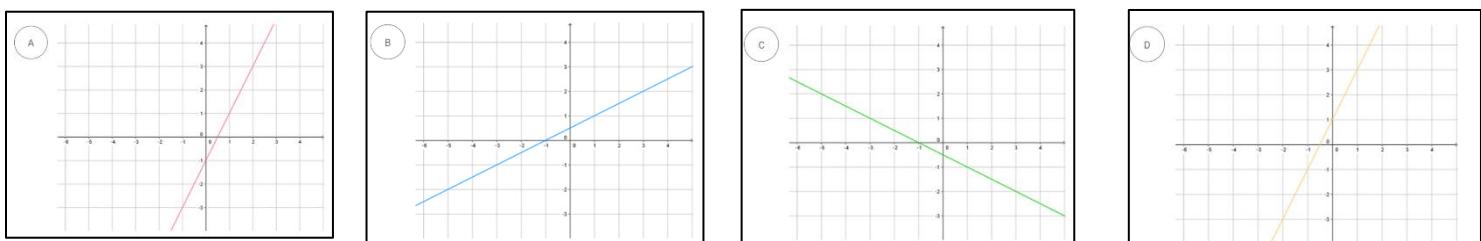
Which of the following graph represents the equation $y = \frac{3}{4}x - 2$?



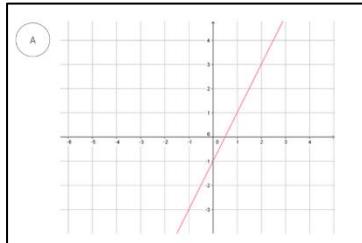
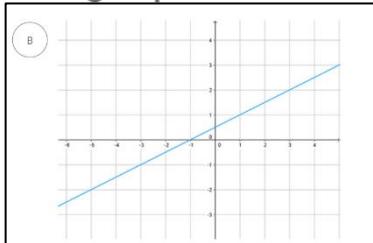
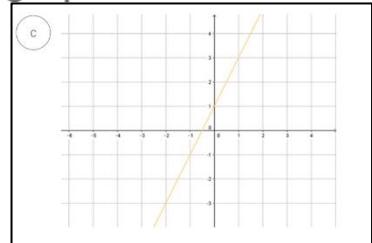
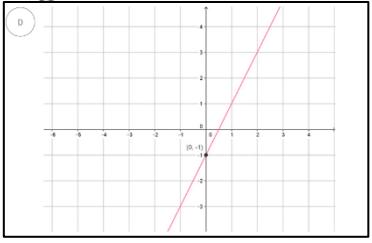
Which of the following graph represents the equation $y = 7x + 1$?



Which of the following represents the graph of the line $x - 2y = -1$?

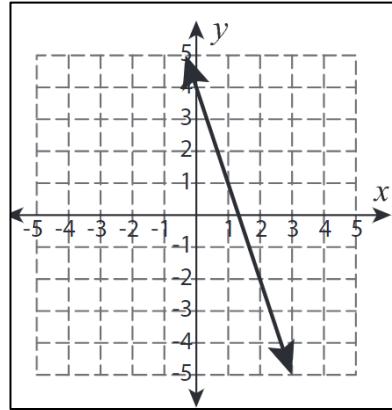


Which of the following represents the graph of the line $2x - y = -1$?



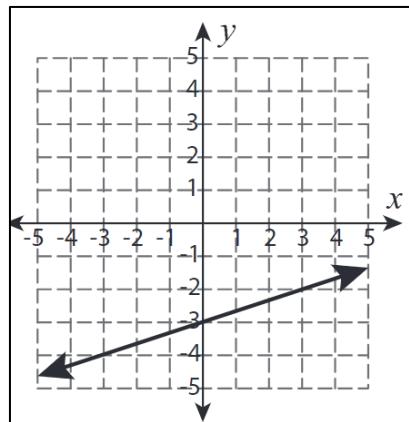
Which of the following equation represents the line on the graph?

a) $y = x + 4$ b) $y = 2x - 4$ c) $y = -3x + 4$



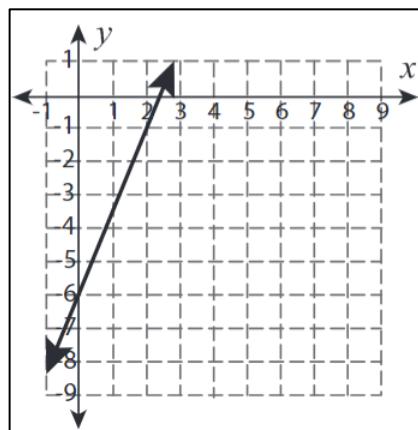
Which of the following equation represents the line on the graph?

a) $y = -2x + 3$ b) $y = \frac{1}{3}x - 3$ c) $y = \frac{1}{4}x + 3$



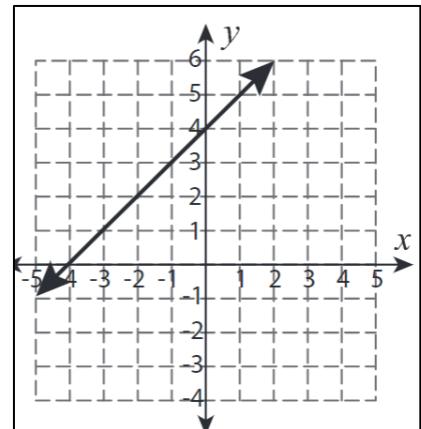
Which of the following equation represents the line on the graph?

a) $y = 3x - 6$ b) $y = \frac{5}{2}x - 6$ c) $y = -\frac{1}{2}x - 6$



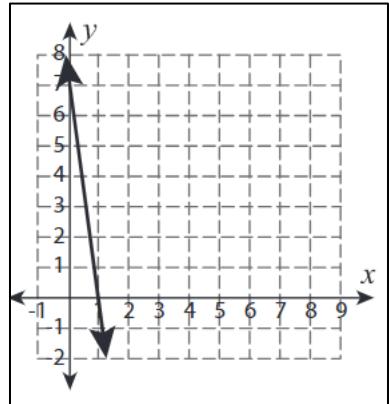
Which of the following equation represents the line on the graph?

a) $y = x + 4$ b) $y = 5x - 4$ c) $y = -4x + 4$



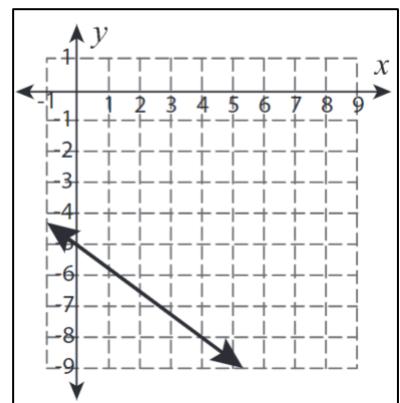
Which of the following equation represents the line on the graph?

a) $y = -7x + 7$ b) $y = 8x - 7$ c) $y = 4x + 7$



Which of the following equation represents the line on the graph?

a) $y = 6x + 5$ b) $y = \frac{5}{4}x + 5$ c) $y = -\frac{3}{4}x - 5$



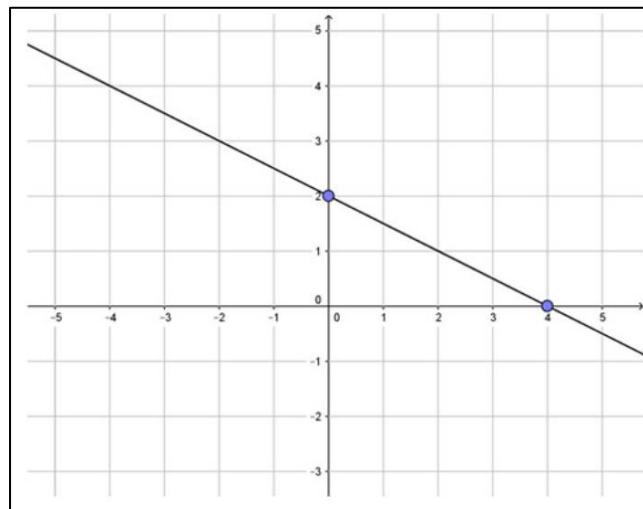
Which of the following equations represents the graph given?

A $x + 2y = 4$

B $2x + y = 4$

C $x + y = 2$

D $2x + 2y = 4$



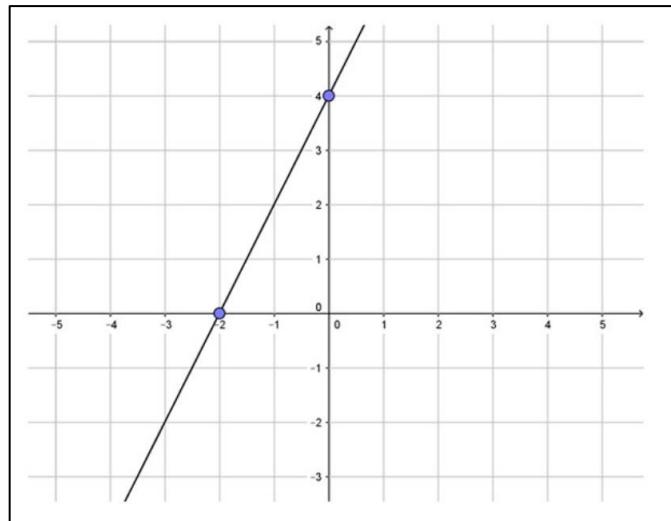
Which of the following equations represents the graph given?

A $x - 2y = 4$

B $2x - y = 4$

C $x - 2y = -4$

D $2x - y = -4$



Which of the following equations represents the graph given?

A

$$-2x + y = -2$$

B

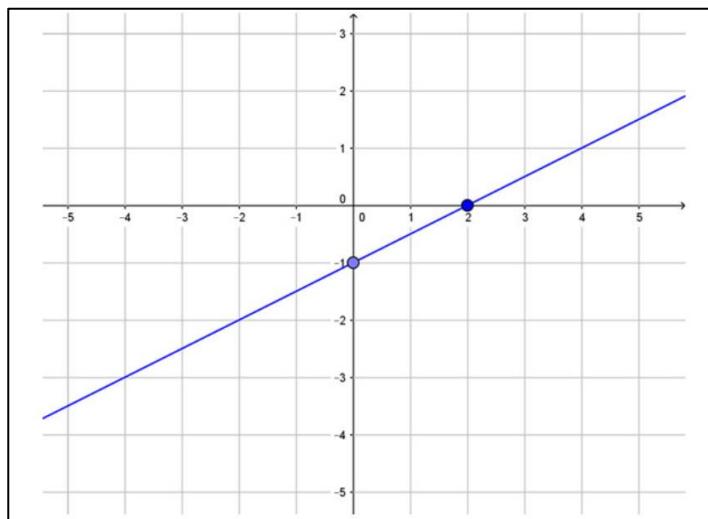
$$2x + y = -2$$

C

$$-x + 2y = -2$$

D

$$x - 2y = -2$$



Which of the following equations represents the graph given?

A

$$-2x - y = -2$$

B

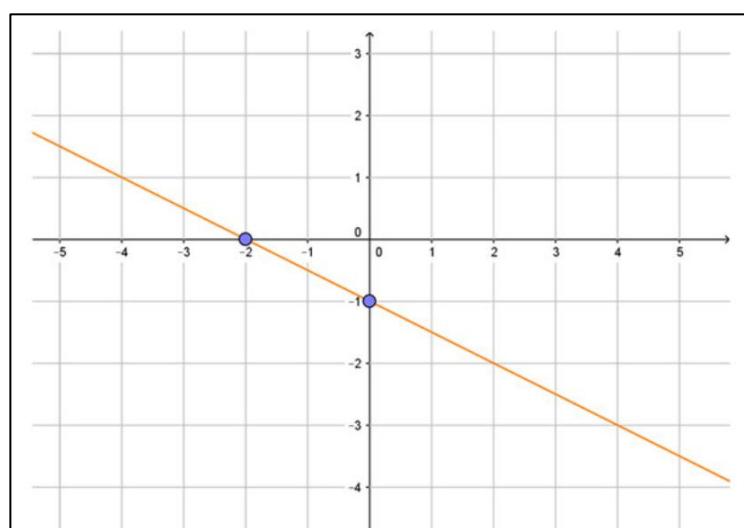
$$2x - y = 2$$

C

$$-x - 2y = -2$$

D

$$-x - 2y = 2$$



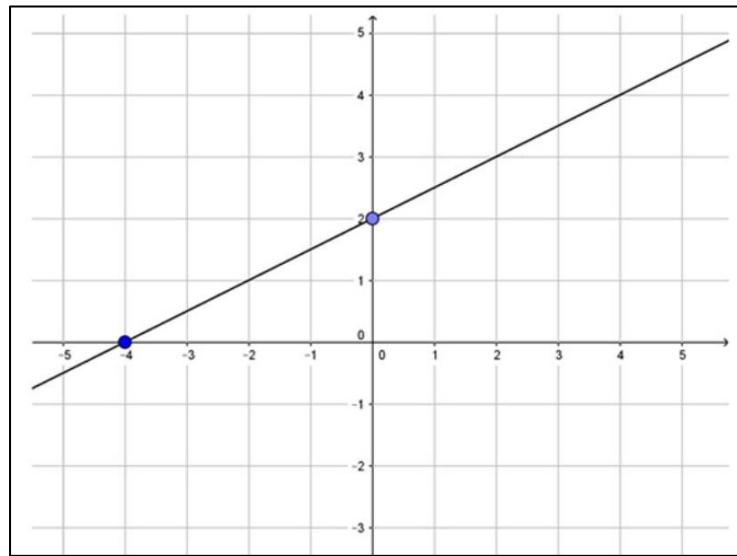
Which of the following equations represents the graph given?

A $x - 2y = 4$

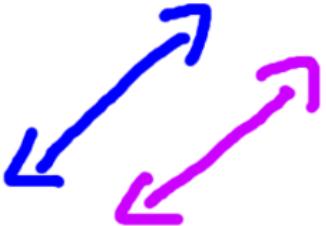
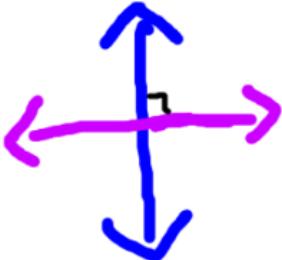
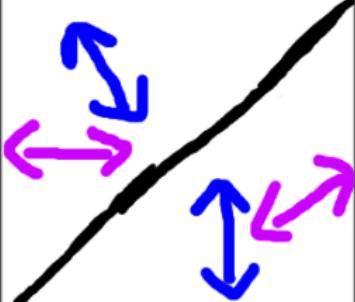
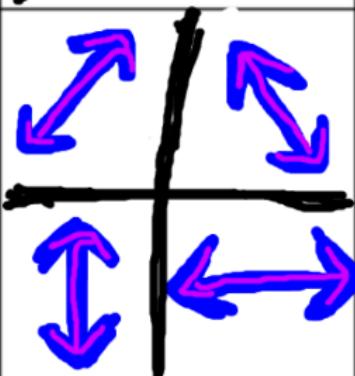
B $x - y = 2$

C $x - 2y = -4$

D $x - y = -2$



PARALLEL & PERPENDICULAR EQUATIONS NOTES

TYPE OF LINES	PICTURE	TYPE OF SLOPE	EXAMPLES
Parallel		Parallel lines have the same slope	$y=3x-1$ $y=3x+5$
Perpendicular		Perpendicular lines have negative reciprocal slopes (multiplied together = -1)	$y = \frac{2}{3}x + 7$ $y = -\frac{3}{2}x + 2$
Neither		lines are not parallel or perpendicular and they do not have the same y-intercept	$y=2x-2$ $y=-2x+2$ <hr/> $y=\frac{1}{4}x+3$ $y=-\frac{1}{4}x+2$
Same		Both slopes and y-intercepts are the same	$y=7x+9$ $y=7x+9$

Determine whether the lines are Parallel, Perpendicular or Neither

$$\begin{aligned}y &= 4x - 2 \\y &= -\frac{1}{4}x + 4\end{aligned}$$

$$\begin{aligned}y &= -\frac{1}{4}x - 1 \\y &= -4x + 1\end{aligned}$$

$$\begin{aligned}4y + 2x &= 12 \\y &= 2x - 17\end{aligned}$$

$$\begin{aligned}y &= -4x - 5 \\y &= -4x + 5\end{aligned}$$

$$\begin{aligned}-\frac{2}{3}x + 2y &= -8 \\3y &= x - 15\end{aligned}$$

$$\begin{aligned}-6x + y &= 1 \\-6x + 3y &= -9\end{aligned}$$

$$\begin{aligned}y &= \frac{3}{5}x + 1 \\5y &= 3x - 2\end{aligned}$$

$$\begin{aligned}4x - 3y &= 2 \\4y - 3x &= 20\end{aligned}$$

$$\begin{aligned}y &= 2x - 2 \\y &= -2x + 2\end{aligned}$$

Write the equation of a line that is parallel to $y = 10x - 3$ and goes through the point $(1, 5)$.

Write the equation of a line that is perpendicular to $y = \frac{1}{3}x + 3$ and goes through the point $(-1, -2)$.

Write the equation of a line that is parallel to $y = -4x - 5$ and goes through the point $(0, -1)$.

Write the equation of a line that is perpendicular to $y = -\frac{5}{8}x$ and goes through the point $(-5, -3)$.

Write the equation of a line that is parallel to $y = \frac{1}{5}x - 3$ and goes through the point $(1, 1)$.

Write the equation of a line that is perpendicular to $y = -\frac{3}{2}x$ and goes through the point $(3, 5)$.

$(-4, -9), (1, -1),$
 $(-8, 10), (2, -6)$

$(-8, 3), (-12, -2),$
 $(-7, -3), (-2, -7)$

$(13, -9), (8, 1),$
 $(-10, 9), (-7, 3)$